10.3

Concept Reinforcement In each of Exercises 1-8, match the conic section with the equation in the column on the right that represents that type of conic section.

1. (d) A hyperbola with a horizontal axis
a) $\frac{x^{2}}{10}+\frac{y^{2}}{12}=1$
2. (f) A hyperbola with a vertical axis
b) $(x+1)^{2}+(y-3)^{2}=30$
3. (h) An ellipse with its center not at the origin
c) $y-x^{2}=5$
4. (a) An ellipse with its center at the origin
d) $\frac{x^{2}}{9}-\frac{y^{2}}{10}=1$
5. (g) A circle with its center at the origin
e) $x-2 y^{2}=3$
6. (c) A parabola opening upward or downward
7. (e) A parabola opening to the right or to the left
f) $\frac{y^{2}}{20}-\frac{x^{2}}{35}=1$
g) $3 x^{2}+3 y^{2}=75$
h) $\frac{(x-1)^{2}}{10}+\frac{(y-4)^{2}}{8}=1$

Ellipse Parabola
Graph each hyperbola. Label all vertices and sketch all asymptotes.
9. $\frac{y^{2}}{16}-\frac{x^{2}}{16}=1$
10. $\frac{x^{2}}{9}-\frac{y^{2}}{9}=1$
11. $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$
12. $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
13. $\frac{y^{2}}{36}-\frac{x^{2}}{9}=1$
14. $\frac{x^{2}}{25}-\frac{y^{2}}{36}=1$
15. $y^{2}-x^{2}=25$
16. $x^{2}-y^{2}=4$
17. $25 x^{2}-16 y^{2}=400$
18. $4 y^{2}-9 x^{2}=36$

Graph.

19. $x y=-6$
20. $x y=8$
21. $x y=4$
22. $x y=-9$
23. $x y=-2$
24. $x y=-1$
25. $x y=1$
26. $x y=2$
27. $9 x^{2}+4 y^{2}-36=0$
28. $x+3 y=2 y^{2}-1$
29. $4 x^{2}-9 y^{2}-72=0$
30. $y^{2}+x^{2}=8 \quad$ Circle
31. $y^{2}=20-x^{2} \quad \begin{gathered}\text { Hyper } \\ \text { Circle }\end{gathered}$
32. $2 y+13+x^{2}=8 x-y^{2} \quad$ Circle
33. $x-10=y^{2}-6 y$
34. $y=\frac{7}{x}$ Hyperbola
35. $x-\frac{8}{y}=0$ Hyperbola
36. $9 x^{2}=9-y^{2}$ Ellipse
37. $y+6 x=x^{2}+5$
38. $x^{2}=16+y^{2}$
39. $9 y^{2}=36+4 x^{2}$ Parabola Hyperbola
40. $3 x^{2}+5 y^{2}+x^{2}=y^{2}+49 \quad$ Circle
41. $3 x^{2}+y^{2}-x=2 x^{2}-9 x+10 y+40$ Circle
42. $4 y^{2}+20 x^{2}+1=8 y-5 x^{2} \quad$ Ellipse
43. $16 x^{2}+5 y^{2}-12 x^{2}+8 y^{2}-3 x+4 y=568$ Ellipse
44. $56 x^{2}-17 y^{2}=234-13 x^{2}-38 y^{2} \quad$ Ellipse

Classify each of the following as the equation of a circle, an ellipse, a parabola, or a hyperbola.
27. $x^{2}+y^{2}-6 x+4 y-30=0 \quad$ Circle
28. $y+9=3 x^{2} \quad$ Parabola
\checkmark Answers to Exercises 9-26 are on p. IA-29.

SKILL REVIEW

To prepare for Section 10.4, review solving systems of equations and solving quadratic equations (Sections 3.2 and 8.2).
Solve.
49. $5 x+2 y=-3$,
$2 x+3 y=12[3.2] \quad(-3,6)$
50. $4 x-2 y=5$, $3 x+5 y=-6[3.2] \quad\left(\frac{1}{2},-\frac{3}{2}\right)$
51. $\frac{3}{4} x^{2}+x^{2}=7[8.2]-2,2$
52. $3 x^{2}+10 x-8=0[8.2]-4, \frac{2}{3}$
53. $x^{2}-3 x-1=0[8.2] \quad \frac{3}{2} \pm \frac{\sqrt{13}}{2}$
54. $x^{2}+\frac{25}{x^{2}}=26[8.5] \quad \pm 1, \pm 5$

SYNTHESIS

TW 55. What is it in the equation of a hyperbola that controls how wide open the branches are? Explain your reasoning.
56. If, in

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$a=b$, what are the asymptotes of the graph? Why?
Find an equation of a hyperbola satisfying the given conditions.
57. Having intercepts $(0,6)$ and $(0,-6)$ and asymptotes $y=3 x$ and $y=-3 x \quad \frac{y^{2}}{36}-\frac{x^{2}}{4}=1$
58. Having intercepts $(8,0)$ and $(-8,0)$ and asymptotes $y=4 x$ and $y=-4 x \quad \frac{x^{2}}{64}-\frac{y^{2}}{1024}=1$
The standard equations for horizontal or vertical hyperbolas centered at (h, k) are as follows:

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1
$$

The vertices are as labeted and the asymptotes are $y-k=\frac{b}{a}(x-h) \quad$ and $\quad y-k=-\frac{b}{a}(x-h)$.
For each of the following equations of hyperbolas, complete the square, if necessary, and write in standard form. Find the center, the vertices, and the asymptotes. Then graph the hyperbola.
59. $\frac{(x-5)^{2}}{36}-\frac{(y-2)^{2}}{25}=1$
60. $\frac{(x-2)^{2}}{9}-\frac{(y-1)^{2}}{4}=1$
61. $8(y+3)^{2}-2(x-4)^{2}=32$
62. $25(x-4)^{2}-4(y+5)^{2}=100$
63. $4 x^{2}-y^{2}+24 x+4 y+28=0$
64. $4 y^{2}-25 x^{2}-8 y-100 x-196=0$

Try Exercise Answers: Section 10.3
9.

11.

19.

